17 research outputs found

    Tutorial on open source online learning recommenders

    Get PDF

    Tutorial on graph stream analytics

    Get PDF

    Location-aware online learning for top-k recommendation

    Get PDF
    We address the problem of recommending highly volatile items for users, both with potentially ambiguous location that may change in time. The three main ingredients of our method include (1) using online machine learning for the highly volatile items; (2) learning the personalized importance of hierarchical geolocation (for example, town, region, country, continent); finally (3) modeling temporal relevance by counting recent items with an exponential decay in recency.For (1), we consider a time-aware setting, where evaluation is cumbersome by traditional measures since we have different top recommendations at different times. We describe a time-aware framework based on individual item discounted gain. For (2), we observe that trends and geolocation turns out to be more important than personalized user preferences: user-item and content-item matrix factorization improves in combination with our geo-trend learning methods, but in itself, they are greatly inferior to our location based models. In fact, since our best performing methods are based on spatiotemporal data, they are applicable in the user cold start setting as well and perform even better than content based cold start methods. Finally for (3), we estimate the probability that the item will be viewed by its previous views to obtain a powerful model that combines item popularity and recency.To generate realistic data for measuring our new methods, we rely on Twitter messages with known GPS location and consider hashtags as items that we recommend the users to be included in their next message. © 2016 Elsevier B.V

    Raising graphs from randomness to reveal information networks

    No full text
    We analyze the fine-grained connections between the aver- age degree and the power-law degree distribution exponent in growing information networks. Our starting observation is a power-law degree distribution with a decreasing expo- nent and increasing average degree as a function of the net- work size. Our experiments are based on three Twitter at- mention networks and three more from the Koblenz Network Collection. We observe that popular network models cannot explain decreasing power-law degree distribution exponent and increasing average degree at the same time. We propose a model that is the combination of exponential growth, and a power-law developing network, in which new "homophily" edges are continuously added to nodes propor- tional to their current homophily degree. Parameters of the average degree growth and the power-law degree distribu- tion exponent functions depend on the ratio of the network growth exponent parameters. Specifically, we connect the growth of the average degree to the decreasing exponent of the power-law degree distribution. Prior to our work, only one of the two cases were handled. Existing models and even their combinations can only reproduce some of our key new observations in growing information networks. © 2017 ACM
    corecore